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Summary. We present a technique to extend any distortion (quality) measure for
planar meshes to meshes on parameterized surfaces. The resulting distortion (qual-
ity) measure is expressed in terms of the parametric coordinates of the nodes. This
extended distortion (quality) measure can be used to check the quality and validity
of a surface mesh. We also apply it to simultaneously smooth and untangle surface
meshes by minimizing the extended distortion measure. The minimization is per-
formed in terms of the parametric coordinates of the nodes and therefore, the nodes
always lie on the surface. In addition, we apply the extension technique to define
quality measures for high-order meshes on parameterized surfaces. Finally, we in-
clude some examples to show the application of the proposed technique. Specifically,
we extend several Jacobian based measures, and we smooth and untangle linear and
high-order meshes on CAD surfaces.

1 Introduction

In the last decades, computational methods have shown to be powerful tools
to solve partial differential equations in applied sciences and engineering. To
apply these methods it is required to generate a mesh of the domain. The mesh
has to be composed by non-inverted (valid) and well-shaped elements (quality)
[1, 2, 3]. If one element is inverted, the variational formulation for that mesh
is not valid. Moreover, just a few low-quality elements can compromise the
accuracy of the solution in the whole domain. Therefore, quality measures
have to be used to determine the validity of a mesh.

Given a mesh with low-quality elements, a standard procedure to improve
the quality of the mesh is to relocate the node positions (smoothing) [4, 5, 6].
However, special attention has to be paid to inverted elements in the mesh.
First, if the initial mesh contains inverted elements, few smoothing methods



2 Abel Gargallo-Peiró, Xevi Roca, Jaime Peraire, Josep Sarrate

can achieve a valid configuration (untangle). Second, some smoothing meth-
ods can obtain inverted configurations, specially when the boundary is non-
convex. Therefore, several methods have been developed to untangle meshes
[7, 8, 9]. Note that combining an untangling method with a smoothing tech-
nique, we can obtain the desired valid and high-quality mesh [10].

In order to smooth a mesh, we require distinguishing between boundary
and inner nodes. Whereas interior nodes can move freely inside the container
volumes, boundary nodes can only move on the surface where they lie. More-
over, if a boundary mesh face is inverted, the corresponding mesh element
is inverted. Therefore, it is of the major importance to ensure a high-quality
surface mesh in order to be able to define a high-quality 3D mesh. To be able
to optimize a surface mesh, we require to involve the geometry representation
in the optimization procedure. Several geometry representations can be used:
triangular mesh, implicit entity, or CAD entities are the most common tech-
niques. For industrial applications the CAD surface description is preferred,
since CAD models are generated in the design process.

The main contribution of this work is to present a technique to extend
any distortion (quality) for planar elements to elements with the nodes on
parameterized surfaces (CAD). Then, the resulting measures are expressed
in terms of the parametric coordinates of the surface. In addition, this tech-
nique allows the extension of measures for linear [1, 2, 3] and high-order [11]
planar elements to elements on parameterized surfaces. We apply this tech-
nique to smooth and untangle linear and high-order triangular meshes with
the nodes on a parameterized surface. The resulting meshes are composed by
valid and high-quality elements with the nodes on the surface. In addition,
we can ensure the optimized nodes lie on the original CAD surface and not
on an approximation of it. To this end, we use the surface parameterization
to map the optimal parametric coordinates to points on the CAD surface.

The rest of the paper is organized as follows. First, in Section 2 we review
the related work on surface mesh optimization. In Section 3, we extend any
distortion and quality measure for linear elements to elements with the nodes
on parameterized surfaces. Then, in Section 4, we detail the optimization
procedure in terms of the parametric coordinates. We develop a non-linear
least-squares problem in order to enforce the ideal configuration for the ele-
ments of the surface mesh, Section 4.1. The implementation of the method
is detailed in Section 4.2. For completeness, in Section 4.3 we detail how to
incorporate several Jacobian-based distortion measures in the optimization
algorithm. In Section 5, we use the presented technique to extend measures
for planar high-order elements to elements on parameterized surfaces. Finally,
we present several examples to show the applications of the proposed method,
Section 6.



Defining quality measures for mesh optimization on CAD surfaces 3

2 Related work

Quality measures are defined to quantify the geometrical validity of the el-
ements of a mesh, see [1] for a comparative analysis. In this work, we focus
on the framework of algebraic quality measures introduced by Knupp [2, 3].
The main idea of this framework is to define the quality (distortion) of an
element as a measure of the deviation of the physical element with respect
to an ideal element. The resulting quality measures are expressed in terms of
the physical coordinates of the element nodes. In this work, we express the
quality measures in terms of the parametric coordinates of the vertices.

In order to improve the quality of a valid mesh, an optimization approach
based on Jacobian-based measures is proposed in [6]. Optimization based ap-
proaches can also be used to untangle inverted elements. In particular, Fre-
itag proposed a two-step procedure [7]: an untangling step to define a valid
mesh, followed by an optimization approach. Similar approaches divided in
two steps have been developed [8, 9]. Later, Escobar et al. proposed a simul-
taneous smoothing and untangling technique [10]. This technique has been
also extended to non-planar triangular meshes [12, 13]. In our work, we use
the modification of the element distortion proposed in [10].

Two main approaches have been proposed to relocate nodes on surface
meshes. On the one hand, several methods compute an ideal location of the
optimized node, that can be off the surface, and then relocate the nodes on the
surface [12, 13, 14, 15, 16]. On the other hand, there also exist several methods
that obtain an ideal location of the nodes directly on the surface [17, 18, 19].
These methods, express the optimization procedure in terms of the parametric
coordinates of an approximated representation of the original surface. We also
compute the optimal location directly on the surface. However, we propose to
quantify the distortion (quality) of the element in terms of the coordinates on
the parametric space of the CAD surface. An optimization approach based on
the proposed distortion ensures that the nodes always lie on the surface, since
the whole process is developed in the parametric space of the original surface.

3 Distortion and quality for elements on parameterized
surfaces

In this section, we first develop an analytical formulation to extend any quality
measure for planar triangles to triangular meshes on a parameterized surface.
As a result, we obtain a quality measure expressed in the two coordinates of
the parametric space of the surface.

Note that triangle elements on a surface are two-dimensional planar enti-
ties immersed in R3. Hence, a possible approach to qualify surface elements
is to use planar quality measures in the plane where the surface element
lies. However, this approach does not allow a straight forward surface op-
timization procedure. Parameterized surfaces enable the development of an
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analytical and straightforward function to quantify the quality of a surface
triangular element. Herein, we propose a composition of the parameterization
of the surface together with a mapping of the surface element to a similar
one in a 2D space, where planar quality measures are defined. This way, the
proposed quality is expressed in terms of the parametric coordinates of the
surface. Such expression allows a natural smoothing technique that avoids any
additional constraint to keep the nodes on the surface, since the procedure is
developed on its parametric space.

3.1 Preliminaries

Let η be a distortion measure for planar elements, with image [1,∞), taking
value 1 for an ideal configuration of the element, and value ∞ when it is
degenerated or tangled. Let q be the corresponding quality measure, defined
as

q =
1

η
. (1)

The image of the quality measure q is [0, 1], taking value 1 for ideal config-
urations and 0 for degenerated or tangled ones. These measures for planar
elements presented can be expressed as the mappings

η : R2 × R2 × R2 −→ [1,∞) ⊂ R, (2)

q : R2 × R2 × R2 −→ [0, 1] ⊂ R. (3)

Given a distortion and its associated quality measure for triangles in the
plane, our goal is to extend these measure to triangles with the vertices on a
parameterized surface, Σ. Assume that the surface Σ is parameterized by a
continuously differentiable and invertible mapping

ϕ : U ⊂ R2 −→ Σ ⊂ R3

u = (u, v) 7−→ x = ϕ(u).
(4)

It is important to point out that in our applications we consider parameter-
ized CAD surfaces. Thus, the evaluation of the surface parameterization and
its derivatives requires a geometry engine. Specifically, in our implementation
we use OpenCASCADE library [20].

3.2 Measures for triangles on parametric coordinates

To evaluate the quality of a triangle t
Σ

with vertices on a surface Σ, we first
express the vertices as the image by the parameterization ϕ of the correspond-
ing parametric coordinates in U . Since t

Σ
is planar, but it is immersed in R3,

we define the quality of the physical triangle as the quality of a geometrically
equivalent triangle t on R2. Once in R2, the proposed formulation allows to
extend any existent distortion and quality measure for planar elements. In
Section 4.3, we detail the distortion measures considered in this work.
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Fig. 1. Diagram of mappings involved in the definition of the quality measure.

In order to define a quality measure in terms of the parametric coordinates
of the three vertices of the triangle, we define the mapping

ϕ̃ : U × U × U −→ Σ ×Σ ×Σ
(u0,u1,u2) 7−→ (x0,x1,x2) = (ϕ(u0), ϕ(u1), ϕ(u2)).

(5)

This mapping transforms a triangle tU = (u0,u1,u2) in the parametric space
U , to a triangle t

Σ
= (x0,x1,x2) with the nodes on the surface Σ determined

by ϕ, see Figure 1. Since t
Σ

defines a plane in R3, we can map t
Σ

to a
geometrically equivalent triangle in R2. That is, we can define a mapping T̃
from Σ×Σ×Σ to R2×R2×R2. To define T̃, we consider an auxiliary linear
mapping T from R3 to the plane. The domain of this mapping is expressed
in the canonical basis of R3, and the image is expressed in terms of a new 2D
orthogonal basis determined by a combination of two edges of the triangle.
Let

e1 := x2 − x1, (6)

e2 := x0 − x1,

be the vectors determined by two edges of the triangle. Then, we define

ẽ1 :=
e1

‖e1‖
,

ẽ2 := γ ẽ2,0, with ẽ2,0 :=
e2 − (eT2 · ẽ1) ẽ1

‖e2 − (eT2 · ẽ1) ẽ1‖
,

as the two orthonormal vectors of the new basis, where γ is defined to ensure
a well oriented orthonormal basis. Specifically, we define γ as:

γ :=
(ẽ1 × ẽ2,0) · n
|(ẽ1 × ẽ2,0) · n|

=
det(ẽ1, ẽ2,0,n)

|det(ẽ1, ẽ2,0,n)|
,
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Fig. 2. Vector edges e1 and e2 for a triangle tΣ = (x0,x1,x2) on a surface Σ, and
diagram of function T̃.

where n ≡ n(x1) = ∂ϕ
∂u (u1, v1) × ∂ϕ

∂v (u1, v1) is the normal to the surface at
x1 = ϕ(u1, v1). Note that γ = ±1, being 1 for counter-clockwise oriented
triangles, and −1 for clockwise oriented ones.

Now, we can define T as

T : R3 −→ R2

x 7−→M · (x − x1),
(7)

where M = (ẽ1 ẽ2)
T

is a 2× 3 matrix. In addition, we define T̃ as:

T̃ : Σ ×Σ ×Σ −→ R2 × R2 × R2

t
Σ

= (x0,x1,x2) 7−→ t = (y0,y1,y2) = (T(x0),T(x1),T(x2)),
(8)

see Figure 2. Hence, we can express the distortion measure for a triangle t
Σ

on the surface as:

η
Σ

: Σ ×Σ ×Σ T̃−→ R2 × R2 × R2 η−→ R
(x0,x1,x2) 7−→ T̃(x0,x1,x2) 7−→ η(T̃(x0,x1,x2)).

That is, as the composition

η
Σ

= η ◦ T̃ : Σ ×Σ ×Σ −→ [1,∞). (9)

Note that η
Σ

is a distortion measure on Σ, since it is the composition of
a planar distortion measure η, and a change of variable of the plane where t

Σ

lies. Moreover, the reciprocal of η
Σ

,

q
Σ

:=
1

η
Σ

: Σ ×Σ ×Σ −→ [0, 1],

is also a quality measure, in the sense of [2]. It is important to point out that
this quality measure holds the same properties of the corresponding original
planar quality measure q.

Finally, we use the expression of the distortion η
Σ

, Equation (9), to define
the distortion and quality measures in terms of the parametric coordinates of
the triangle.
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Definition 1. The distortion measure for triangles on parametric coordinates
is:

ηU := η
Σ
◦ ϕ̃ = η ◦ T̃ ◦ ϕ̃ : U × U × U −→ [1,∞). (10)

Definition 2. The quality measure for triangles on parametric coordinates is:

qU :=
1

ηU
: U × U × U −→ [0, 1]. (11)

Next, we present a simplified expression for the distortion measure for
triangles on parametric coordinates, see Equation (10), when there is one free
node in the triangle and the rest of nodes are fixed.

Remark 1. Let u be the free node of a triangle and u1 and u2 the two fixed
nodes. It can be proved that for fixed values of u1 and u2, the restriction of
ηU to a free node u,

ηU (·;u1,u2) : U
ϕ̃(·;u1,u2)

−−−−−−→ Σ ×Σ ×Σ T̃−→ R2 × R2 × R2 η−→ R
u ϕ̃(u,u1,u2) 7−→ T̃(ϕ̃(u,u1,u2)) 7−→ η(T̃(ϕ̃(u,u1,u2))),

corresponds to the expression

η̂
U

: U ⊂ R2 ϕ−→ Σ ⊂ R3 T−→ R2 η̂−→ R
u 7−→ ϕ(u) 7−→ T(ϕ(u)) 7−→ η̂(T(ϕ(u))),

where

η̂(y) := η(y,y1,y2), (12)

being straightforward to pre-coumpute the values y1 := (0 0)T , and y2 :=
(‖e1‖ 0)T . That is, it corresponds to the composition

η̂
U

= η̂ ◦T ◦ ϕ : U ⊂ R2 −→ [1,∞), (13)

referred as the restricted distortion measure for triangles on parametric coor-
dinates.

4 Application: optimization of surface mesh quality

In this section, we present an algorithm to optimize the distortion (quality)
measure of triangular and quadrilateral meshes on parameterized surfaces.
First, we formulate the optimization problem. Second, we present the proposed
implementation. Finally, we specify some implementation details.
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4.1 Formulation: imposing an ideal mesh distortion in the
least-squares sense

The main goal of a simultaneous smoothing and untangling method is to
obtain high-quality meshes composed by valid (non-inverted) elements. Note
that the best possible result, can be characterized in terms of the distortion
measure. That is, given a distortion measure ηU and a meshM on a parame-
terized surface composed by nN nodes and nE elements, the node location is
ideal if

ηU (tj
U

) = 1 j = 1, . . . , nE , (14)

where tj
U

= (uj1 ,uj2 ,uj3) is the jth element expressed on parametric coordi-
nates. However, for a fixed mesh topology the node location that leads to an
ideal mesh distortion is not in general achievable. That is, the constraints in
Equation (14) cannot be imposed strongly and therefore, we just enforce the
ideal mesh distortion in the least-squares sense. It is important to point out
that the best configuration is delimited by the initial mesh topology.

For a given mesh topology and a set of fixed nodes (nodes on the surface
boundary), we formulate the least-squares problem in terms of the parametric
coordinates of a set of free nodes (inner nodes on the surface). To this end,
we reorder the parametric coordinates of the nodes, ui, in such a way that
i = 1, . . . , nF are the indices corresponding to the free nodes, and i = nF +
1, . . . , nN correspond to the fixed nodes. Thus, we can formulate the mesh
optimization problem as

min
u1,...,unF

f(u1, . . . ,unF ; unF+1, . . . ,unN ), (15)

where

f(u1, . . . ,unF ; unF+1, . . . ,unN ) :=
1

2

nE∑
j=1

(ηU (tj
U

)− 1)2

denotes the objective function.
Finally, the optimal configuration is found between the candidates for the

minimization of (15). The candidates are the critical parametric coordinates
(u1, . . . ,unF ) of f . They are characterized by ensuring, for i = 1, . . . , nF ,

∂f

∂ui
(u1, . . . ,unF ; unF+1, . . . ,unN ) =

nE∑
j=1

(ηU (tj
U

)− 1)
∂ηU
∂ui

(tj
U

) = 0. (16)

4.2 Implementation: deviation of the submesh distortion respect
an ideal configuration

To solve the optimization problem in Equation (15), we have to find the opti-
mum between the candidate configurations. These configurations are charac-
terized by the global non-linear constraints in Equation (16). To solve these
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constraints, we choose a non-linear iterative method that: exploits the local-
ity of the problem, avoids solving large linear systems, and is well suited for
parallelization (by coloring the mesh nodes). Specifically, we use a non-linear
iterative Gauss-Seidel method determined by the iteration

uk+1
i = uki − αki [∇2

iif(wk
i )]−1 ∇if(wk

i ) i = 1, . . . , nF , (17)

where αki is the step length, and

wk
i = (uk+1

1 , . . . ,uk+1
i−1 ,u

k
i ,u

k
i+1, . . . ,u

k
nF ; u0

nF+1, . . . ,u
0
nN )

is the vector of updated node locations for the i− 1 first nodes. Note that ∇i

and ∇2
ii denote the gradient and the Hessian with respect to the parametric

coordinates ui of node i.
In our implementation, we exploit the fact that each node only contributes

to its neighbouring elements. To this end, we denote byMu the elements that
contain a free node u. The set of elements Mu is referred as the submesh
associated with node u. Let uki be the parametric coordinates of node i at
step k, and letMuki

be the corresponding associated submesh composed by mi

elements. Let η̂j
U

(ui) be the restricted distortion measure on the jth element
of Muki

, see Equation (13). We say that

f̂(ui) =
∑
j∼i

(
η̂j
U

(ui)− 1
)2

=

mi∑
j=1

(
η̂j
U

(ui)− 1
)2

(18)

is a local merit function that measures the deviation respect an ideal configu-
ration of the submesh distortion associated with ui, where j ∼ i denotes that
the summation is performed only for the elements that contain the node i.
According to this merit function we can implement the iteration k + 1 for
node i of the proposed non-linear method, Equation (17), as

uk+1
i = uki − αki [∇2

iif̂(uki )]−1 ∇if̂(uki ) i = 1, . . . , nF . (19)

4.3 Inclusion of several distortion measures

We apply the presented approach to define distortion and quality measures
on parameterized surfaces to two Jacobian algebraic distortion measures for
planar elements, presented in [2]. Specifically, we consider the shape and the
Oddy measures. Moreover, we detail how to modify these measures to incor-
porate the untangling capability to the optimization method. To this end,
we use the modification presented in [10]. This modification can be applied
to distortion measures where the determinant of the Jacobian appears in the
denominator.

In order to define a Jacobian-based measure for triangles, three types of
elements are required: the reference, the ideal, and the physical. The refer-
ence element has an auxiliary use, since it is straight forward to define a linear
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Fig. 3. Mappings between the reference, the ideal and the physical elements.

affine mapping between the reference and any other triangle. The ideal trian-
gle represents the best configuration of the geometrical property to quantify.
The physical is the element to be measured. Once the mappings between the
reference and the ideal and the physical elements are obtained, a mapping
between the ideal and the physical elements is determined by (see Figure 3)

φ : tI
ψ−1

0−→ tR
ψ−→ t.

The Jacobian of this affine mapping contains information about the deviation
of the physical element with respect to the ideal. Hence, the distortion measure
of the physical element is defined in terms of S(y0,y1,y2) = Dφ. These
distortion measures quantify the deviation of a geometrical property of the
physical element respect the ideal element in a range scale [1,∞).

Shape distortion measure

ηsh(y0,y1,y2) =
‖S(y0,y1,y2)‖2

2|σ(y0,y1,y2)|
, (20)

where ‖ · ‖ is the Frobenius norm, and σ(y0,y1,y2) = det(S(y0,y1,y2)). This
distortion measure quantifies the deviation of the shape of the physical triangle
with respect to the ideal shape. To incorporate the untangling capability to
the optimization method, we replace σ in (20) by

σ∗(σ; δ) =
1

2

(
σ +

√
σ2 + 4δ2

)
, (21)

where δ is a numerical parameter that has to be determined [10].

Oddy measure

η(y0,y1,y2) =
3

2
σ−2

(
‖STS‖2 − 1

3
‖S‖4

)
, (22)

where analogously to than for the shape distortion measure, we replace σ by
σ∗ to optimize tangled meshes.
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5 Application: measures for high-order surface meshes

Finally, we show that the proposed technique can also be applied to define
measures for high-order meshes on parameterized surfaces. Let η be a Jacobian
distortion measure for linear elements (see Section 4.3), t a triangle with area
|t|, and φ the mapping between the ideal and the physical triangle. In [11]
we propose the following definition of the distortion measure for a planar
high-order triangular element:

Definition 3. The distortion measure for a high-order planar triangle with
nodes x1, . . . ,xnp is

ηφ(x1, . . . ,xnp) :=

(
1

|t|

∫
t

η2(Dφ(φ−1(x); x1, . . . ,xnp)) dx

) 1
2

. (23)

Similarly to the procedure developed for planar linear triangles, the previ-
ous measure for planar high-order triangles can be extended to parameterized
surfaces. Let t

Σ
be a triangle with the nodes on a surface parameterized by ϕ,

|t
Σ
| the area of the triangle, and T the projection from the canonical basis on

R3 to an orthonormal basis on the tangent plane for each point of the physical
element. We consider the following definition:

Definition 4. The distortion measure for a high-order triangle on a param-
eterized surface Σ with nodes u1, . . . ,unp ∈ U in the parametric space is

η̂ϕ(u1, . . . ,unp) :=

(
1

|tΣ |

∫
t
Σ

η2
(
T
(
Dφ

(
φ−1(x);ϕ(u1), . . . , ϕ(unp)

)))
dx

) 1
2

.

This extended measure for high-order elements can be used to optimize
high-order measures on parameterized surfaces. To this end, we extend to
high-order meshes the optimization procedure presented in Section 4.1.

6 Numerical examples: optimization of surface mesh
quality

In this section, we present several examples in order to show several proper-
ties of the proposed method: 1. it is consistent with the original planar dis-
tortion measure, 2. it can incorporate several planar distortion measures, 3.
it provides high-quality meshes even though the initial mesh contains a large
number of tangled elements, 4. it can be used to optimize surface meshes
generated from industrial CAD models, and 5. it can be used to optimize
high-order meshes on CAD surfaces. For all the examples, we display a table
summarizing the quality statistics of the meshes. Specifically, we provide: the
minimum, the maximum, the mean and the standard deviation of the quality
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(a)
 

 

(b)

Fig. 4. Triangle mesh for a planar square. Mesh colored according to (a) planar
shape quality measure, and (b) surface shape quality measure.

Table 1. Planar quality shape and surface quality shape statistics of the mesh on
a planar square.

Measure Figure Min. Q. Max. Q. Mean Q. Std. Dev. Tang. el.

Planar shape 4(a) 0.75 1.00 0.96 0.04 0
Surface shape 4(b) 0.75 1.00 0.96 0.04 0

of the elements, and the number of tangled elements. We highlight that in
all cases, the smoothed mesh increases the minimum and mean values of the
mesh quality and decreases its standard deviation. All algorithms have been
implemented in C++ in the meshing environment ez4u [21, 22, 23]. The goal
of these examples is to show several applications of the proposed framework.
In this sense, the current implementation is not totally optimized. Therefore,
we do not include the CPU time required to optimize the presented examples.

6.1 Consistency

The goal of this example is to show that a planar distortion measure η and the
corresponding extended surface distortion measure ηU are the same when the
surface is the Euclidean plane. It is important to point out, that this is true
by construction. That is, the parameterization of the plane is the identity, and
the mapping T is just a rigid body motion. Since η is invariant under rigid
body motion, we have that η is equal to ηU . Specifically, in this example we
consider η to be the shape distortion measure, see Figure 4. In addition, Table
1 shows the statistics corresponding to both measures. We observe that, as
expected, both measures present the same results.

6.2 Several quality measures

The goal of this example is to show that any planar distortion measure can be
extended to parameterized surfaces. Then, we use the technique presented in
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(a)

(b)

(c)

(d)

Fig. 5. Meshes for a torus. Meshes colored according to the shape quality measure:
(a) initial mesh, and (b) smoothed and untangled mesh. Meshes colored according to
the Oddy quality measure: (c) initial mesh, and (d) smoothed and untangled mesh.

Section 4 to optimize the quality of the mesh. However, note that this untan-
gling technique can be only applied for Jacobian-based distortion measures
with the determinant of the Jacobian on the denominator. Therefore, in this
example we extend to parameterized surfaces only the shape and the Oddy
measures. Then, we generate a triangular mesh on a torus composed by 1600
nodes and 3002 elements. In Figures 5(a) and 5(c) we show the initial mesh,
coloring the elements with respect to the two different selected measures. Note
that the mesh contains 73 inverted elements. Then, in Figures 5(b) and 5(d)
we show the two resulting optimized meshes.

Table 2 summarizes the quality statistics of the meshes presented in Figure
5. Note that the proposed algorithm untangles an input mesh with inverted el-
ements. In addition, for both cases, the proposed method improves the quality
of the initial surface meshes. Note that the Oddy measure is more restrictive.
That is, Oddy measure quantifies as low quality the rectangular triangles (the
ideal triangle is the equilateral). Nevertheless, both measures properly detect
the degenerated and the valid elements.

6.3 Surfaces composed of multiple patches

In this example, we apply the smoothing and untangling procedure presented
in Section 4 using the shape distortion measure, Equation (20), to two CAD
models composed by multiple patches: a component of a gear box and a crank
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Table 2. Shape and Oddy quality statistics of the meshes on the torus.

Measure Mesh Figure Min. Q. Max. Q. Mean Q. Std. Dev. Tang. el.

Shape
Tangled 5(a) 0.00 1.00 0.72 0.24 73

Smoothed 5(a) 0.79 0.92 0.86 0.02 0

Oddy
Tangled 5(c) 0.00 1.00 0.34 0.26 73

Smoothed 5(d) 0.31 0.59 0.42 0.03 0

(a) (b)

Fig. 6. Meshes for a component of a gear box colored according to the shape quality
measure: (a) initial mesh, and (b) smoothed mesh.

Table 3. Shape quality statistics of the meshes on the component of a gear box and
a crank shaft.

Surface Mesh Figure Min. Q. Max. Q. Mean Q. Std. Dev. Tang. el.

Comp. gear
Initial 6(a) 0.56 1.00 0.94 0.07 0

Smoothed 6(b) 0.74 1.00 0.95 0.04 0

Crank shaft
Initial 7(a) 0.49 1.00 0.92 0.09 0

Smoothed 7(b) 0.59 1.00 0.93 0.06 0

shaft. Figure 6(a) shows the initial mesh on the component of the gear box.
It is composed by 5723 nodes and 11462 triangular elements. Figure 6(b)
presents the smoothed mesh. Then, Figure 7(a) presents the initial mesh on
the crank shaft. It is composed by 4664 nodes and 9328 triangular elements.
Figure 7(b) presents the resulting mesh from the smoothing procedure.

Table 3 details the shape quality statistics of the presented meshes. Note
that the smoothing procedure properly improves the quality of the surface
mesh in both cases. Moreover, it increases the minimum and the mean value
of the quality of the mesh.
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(a)

(b)

Fig. 7. Triangular meshes for a crank shaft colored according to the shape quality
measure: (a) initial mesh, and (b) smoothed mesh.

6.4 Measures for high-order surface meshes

We present two applications of the extended measure for high-order elements
on parameterized surfaces. To this end, we extend the optimization procedure
presented in Section 4 for linear elements, to the measure for high-order ele-
ments presented in Equation 4. For both examples we use the shape distortion
measure. The goal of the first example is to illustrate that the extended mea-
sure allows smoothing and untangling high-order meshes with a large number
of tangled elements. We consider a revolution surface meshed with triangular
elements, see Figure 8. Figure 8(a) presents a tangled mesh composed by a
total of 522 triangle elements of order 2 (1121 nodes). Figure 8(b) presents the
smoothed and untangled mesh. Next, we generate a mesh of order 5 composed
by 7558 nodes and 532 triangle elements on a propeller. Figure 9(a) shows the
initial high-order mesh, where the edges correspond to straight segments on
the parametric space. Figure 9(b) presents the mesh resulting from the opti-
mization procedure using the shape distortion measure. Table 4 presents the
shape quality statistics corresponding to the presented high-order meshes.
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(a) (b)

Fig. 8. Second order triangular meshes colored according to the shape quality mea-
sure for a revolution surface: (a) tangled mesh, and (b) smoothed and untangled
mesh.

Table 4. Shape quality statistics of the meshes on a propeller.

Surface Mesh Figure Min. Q. Max. Q. Mean Q. Std. Dev. Tang. el.

Revolution Srf
Initial 8(a) 0.00 0.96 0.79 0.30 297

Smoothed 8(b) 0.75 0.90 0.81 0.03 0

Propeller
Initial 9(a) 0.22 0.97 0.79 0.13 0

Smoothed 9(b) 0.46 0.97 0.81 0.10 0

7 Concluding remarks

In this work, we develop a new technique to define distortion (quality) mea-
sures for meshes on parameterized surfaces. Specifically, the proposed mea-
sures are expressed in terms of the parametric coordinates of the nodes. Then,
we use the defined distortion measure to smooth and untangle meshes on pa-
rameterized surfaces. Since all the process is developed in the parametric
space, the nodes are always on the CAD surface. In addition, we apply the
proposed extension to define a distortion measure for high-order meshes on
parameterized surfaces. We show the applicability of the optimization tech-
nique for two different planar distortion measures. In addition, we show that
the method can be used to smooth and untangle linear and high-order meshes
on parameterized surfaces.
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